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Abstract

We consider the field Fq. Let f : Fq → Fq for which we only know a fraction of

input and output. We suppose that q is large. We would like to give an answer to

the following question: does there exist a polynomial of degree d which is very closed

to the function f , and we would like to give an approximation of this distance, or

equivalently, if we consider the smallest linear code of block length q − 1 containing

both ev(f) and every codeword of the Reed-Solomon code [q − 1, d + 1]q we would

like to give an approximation of the minimal distance between this last code and the

Reed-Solomon code [q − 1, d + 1]q.

1 Introduction, The Basic Univariate Test

We want to test whether f is a polynomial of total degree d. M. Kiwi [2] describe equivalent

tests that achieve this goal. Let Pd denote the set of polynomials from Fq to Fq of total

degree d, and Cf (d) the smallest linear code of block length q− 1 containing both ev(f) and

every codeword of the Reed-Solomon code C(d) = [q−1, d+1]q, Cf (d)
def
= {φev(f)+θg | g ∈

C and φ, θ ∈ Fq}. Here is these equivalent tests.

• Basic Univariate Test [3]: Randomly pick d+2 distinct points x0, . . . , xd+1 in Fq. Then,

accept if there exists a polynomial in Pd that agrees with f on x0, . . . , xd+1, and reject

otherwise.



• Basic Univariate Test: let C(d) be the code whose elements are of the form (p(x) : x ∈

Fq) where p ranges over Pd. Randomly choose a dual codeword λ ∈ C(d)⊥ of weight

d + 2. Then, accept if λ ∈ Cf (d)⊥, and reject otherwise.

Recall that the minimal distance of a code C is the minimum weight of the codewords

in C, and is denoted wt(C). We denote ρwt(C) the relative minimum distance of a code C

as the minimal distance of a code C divided by its block length. So if we denote ∆(f, Pd)

the normalized distance, we see that ∆(f, Pd) = ρwt(Cf (d) \ C(d)).

Theorem 1 [3] Given a positive integer d, a finite field Fq of size at least d + 2 and a

function f : Fq → Fq, if f satisfies

Pr
[
∃g ∈ F(d)

2n [x] such that g(xi) = f(xi) ∀i ∈ {0, . . . , d + 1}
]
≥ 1− δ,

where the probability is taken over the uniform distribution over all d+2-tuples {x0, . . . , xd+1}

of distinct elements from Fq, then ∆(f, Pd) ≤ δ thus ρwt(Cf (d) \ C(d)) ≤ δ.

The testers above establish that univariate testing can be done in polynomial time (in

d), and probes f in only O(d) places [3], but from the point of view of testing it is not very

useful, since it is not very “different” from interpolation.

2 Test based on evenly spaced points over prime field

We now describe a tester which only works for fields of the form Fp for a prime p [3].

Definition 1 We say that a set of points {x0, . . . , xn} is evenly spaced if ∃h such that

xi = x0 + i ∗ h.

Lemma 1 Given a positive integer d and a prime p ≥ d + 2. The points {(xi, yi)|i ∈
{0, . . . , d+1}; xi = x+i∗h; xi, yi ∈ Fp} lie on a degree d polynomial if and only if

∑d+1
i=0 αiyi =

0, where αi = (−1)(i+1)
0@d + 1

i

1A.

Theorem 2 Given a positive integer d, a prime p ≥ d + 2 and a function f : Fp → Fp such

that

P
x,h∈F2n

[
d+1∑
i=0

αi · f(xi) = 0

]
≥ 1− δ where δ ≤ 1

2(d + 2)2
,

then ∆(f, Pd) ≤ 2δ, or equivalently ρwt(Cf (d) \ C(d)) ≤ 2δ.



In particular, the bound above implies that the tester resulting from this theorem would

need to probe f in O(d3). We get the following Evenly-Spaced-Test:

Repeat O(d2 log(1/β)) times

Pick x, h ∈ Fp × Fp and verify that
∑d+1

i=0 αi · f(x + i ∗ h) = 0

Reject if any of the test fails.

Theorem 3 If the output of a program can be expressed by a low-degree polynomial correctly

on all its inputs from Fp, then it is passed by Evenly-Spaced-Test. If the output of the program

is not O( 1
d2 )-close to a univariate polynomial, then with probability 1 − β, it is rejected by

Evenly-Spaced-Test.

3 Evenly-Spaced-Test for Extension of Prime Fields

We now extend the last results to the field Fq = Fpn . ω denote a primitive element of Fpn .

Definition 2 We say that a set of distinct points {x0, . . . , xn} is regularly spaced if there

exist x, h, ω ∈ Fpn ×F∗pn ×F∗pn, such that x0 = x et xi = x + ωi−1 ∗ h pour i ∈ {1, . . . , d + 1}.

Theorem 4 Let d an integer such that pn > d + 1 and a function f : Fpn → Fpn. Let

{x0, . . . , xd+1} a regularly-spaced set with x0 = x and xi = x + h · ωi−1. Let yi = f(xi), i ∈

{0, . . . , d + 1}. The set of (xi, yi) lie on a degree at most d polynomial if and only if∑d+1
i=0 αi(ω, d) · yi = 0 where αi are given by the following recurrence B0

1 = B1
1 = 1,

B0
i = B0

i−1/ω
d−i+2, Bi

i = Bi−1
i−1/(ω

i−1 − ωd) and Bt
i = Bt−1

i−1/A
t−1
i−1 − Bt

i−1/A
t
i−1 where At

i =

ωt−1 − ωt+d−i t ∈ {0, . . . , i}, then αt(ω, d) = Bt
d+1.

Proof: By linearity we can consider that we test the polynomial Xd. For j ∈ {1, . . . , d} et s ∈

{1, . . . , d− j +2}, we define the function f (j)(xs−1, . . . , xs+j−1) =
f(j−1)(xs−1,...,xs+j−2)−f(j−1)(xs,...,xs+j−1)

xs−1−xs+j−1

with f (0)(xi) = f(xi) = xd
i , i ∈ {0, . . . , d + 1}. We show this theorem by recurrence: If

j = 1 we see that f (j)(xs−1, xs) is the sum of all monomial in xs−1, xs of degree d − 1, we

suppose that f (j)(xs−1, . . . , xs+j−1) is the sum of all monomial of degree n− j. Now at rank

j + 1, for any monomial x
is−1

s−1 xis
s . . .x

is+j−1

s+j−1 of f (j)(xs−1, . . . , xs+j−1) we have the monomial

x
is−1

s+j xis
s . . .x

is+j−1

s+j−1 of f (j)(xs−1, . . . , xs+j−1) with is−1 + . . . + is+j−1 = n− j, and

x
is−1

s−1 xis
s . . . x

is+j−1

s+j−1−x
is−1

s+j xis
s . . . x

is+j−1

s+j−1 = (xs−1−xs+j)·M is−1−1
s−1,s+j ·xis

s . . . x
is+j−1

s+j−1 where M
is−1−1
s−1,s+j is

the sum of all monomials of degree is−1−1 in xs−1,xs+j, so we see that M
is−1−1
s−1,s+j ·xis

s . . . x
is+j−1

s+j−1



is a sum of monomial of degree n − j − 1 in xs, . . . , xs+j−1. We get that f (j+1) is the set

of all monomials of degree n − j − 1. Thus if f is a polynomial of degree at most d then

f (d+1)(x0, . . . , xd+1) = 0 The construction of f (j) immediately gives the proof of the converse

and states that there exists αi(ω, d) which never depends of h since xi−xj = h ·(ωi−1−ωj−1)

and such that
∑d+1

i=0 αi(ω, d) · yi = 0.

Theorem 5 Given a positive integer d, a integer n such that pn ≥ d + 2 and a function

f : Fpn → Fpn such that

P
x,h∈Fpn

[
d+1∑
i=0

αi(ω, d) · f(xi) = 0

]
≥ 1− δ ou δ ≤ 1

2(d + 2)2
,

then ∆(f, Pd) ≤ 2δ, or equivalently ρwt(Cf (d) \ C(d)) ≤ 2δ.

4 Extending the tester to multivariate polynomials

Theorem 6 Given a finite field Fq, such that q > md and a function f : Fm
q → Fq such that

P
x,h∈Fm

q

[
d+1∑
i=0

αi(ω, d) · f(xi) = 0

]
≥ 1− δ where δ ≤ 1

2(d + 2)2
,

then ∆(f, P n
d ) ≤ 2δ, or equivalently ρwt(Cf (d) \ C(d)) ≤ 2δ. Here C(d) denote the Reed-

Muller code R[d,m]q.

In conclusion we can say that the theorems 3 is true for these last cases and the proof is

similar to Sudan’s proof. Unfortunately These tests above are usefull only if the probability

δ is very clothed to 0.
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